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Mangroves are forested wetlands that represent a functional 
link between the terrestrial and oceanic carbon cycles1, stor-
ing up to four times as much carbon per unit area in com-

parison to terrestrial forest ecosystems2. Mangroves contribute an 
estimated 10–15% of the global carbon storage in the coastal ocean, 
with ~50% of mangrove litterfall production being transported to 
adjacent coastal zones and accounting for 10–11% of the global 
export of particulate terrestrial carbon to the ocean3,4. Furthermore, 
mangrove forests provide a wealth of ecosystem services to coastal 
communities, including habitat for fisheries, firewood and timber, 
all valuable resources in local markets5. Despite this, mangroves are 
impacted by anthropogenically driven disturbances such as defor-
estation, conversion to aquaculture and urban development6–8, and 
coastline transgression due to relative sea level rise9–11. Recent esti-
mates of global mangrove loss rates range between 0.16% and 0.39% 
annually, and may be up to 8.08% in Southeast Asia12. As a conse-
quence, large amounts of previously stored carbon may be released 
into the atmosphere, contributing substantially to net global  
carbon emissions13–15.

Global mangrove carbon stocks2 and aboveground biomass 
(AGB)16,17 have been estimated previously, providing AGB values 
derived from climate-based16 or latitudinal relationships17. The 
spatially explicit distribution in forest structural attributes such as 
mangrove canopy height is rarely considered in these estimates. 
Mangrove canopy height is highly correlated with carbon turnover 
via leaf or litterfall production18 and is therefore an important vari-
able in quantifying contemporary global aboveground productivity 
and carbon sequestration rates. Productivity and forest structure are 
controlled by local environmental gradients (for example, nutrient 
availability and salinity) and hydrology19,20, along with regional cli-
mate and geomorphology17,19–22, resulting in a range of mangrove 
ecotypes, from scrub (< 3 m) to tall (> 15 m) forest stands23–25. Here, 
we produce global maps of mangrove canopy height and AGB 

derived from space-borne remote sensing data and in situ measure-
ments, to perform a global analysis of the spatial patterns and vari-
ability in mangrove forest structure.

Global distribution of mangrove canopy height
We used the global mangrove extent map26, the Shuttle Radar 
Topography Mission (SRTM) 30 m resolution global digital eleva-
tion model (DEM), and Geoscience Laser Altimeter System (GLAS) 
global Lidar altimetry products to produce two baseline canopy 
height maps for the year 2000: a map of maximum canopy height 
(that is, height of the tallest tree; Fig. 1) and a map of basal area 
weighted height (that is, individual tree heights weighted in propor-
tion to their basal area). The latter map was used to generate the 
aboveground mangrove biomass map (see Methods). Our analysis 
of mangrove canopy height distribution is based on the maximum 
canopy height map. Both maps were validated using in situ field mea-
surements of tree height from 331 plots (Supplementary Table 1),  
resulting in overall root-mean-square errors of 3.6 m and 6.3 m, 
respectively (Supplementary Fig. 1). The maximum canopy height 
map shows that half of the world’s maximum mangrove canopy 
height is shorter than 13.2 m (Fig. 2). The maximum canopy height 
exceeds 62 ±  6.8 m (Fig. 2), rivaling maximum tree heights found 
in upland tropical forests27. Equatorial regions of the West African 
and South American coasts stand out as hotspots with the tallest 
mangroves (Table 1a and Supplementary Tables 2–6). The top five 
countries (Table 1a) with the tallest mangroves are Gabon (62.8 m, 
Fig. 3), Equatorial Guinea (57.7 m), Colombia (54.3 m), Venezuela 
(52.6 m) and Panama (50.9 m). These productive forests are signifi-
cantly taller than previously reported values16,18,28 and are located in 
estuarine environments of the world’s most remote, cloudiest, wet-
test (precipitation > 500 cm yr−1) and hottest (mean air temperature 
25.6 °C, ref. 29) regions. In addition, these wetlands grow in river-
dominated coastal settings with low human population densities, 
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potentially high nutrient availability, reduced soil salinity values and 
significant protection from cyclone-induced high-energy winds 
and waves17,30.

We analysed global trends in mangrove canopy height with 
latitude, cyclone landfall frequency, precipitation, temperature, sea 
surface salinity (SSS) and tidal range. Globally, the distribution of 
maximum mangrove canopy height follows a Gaussian latitudinal 
trend (R2 =  0.91), peaking at 1.13° N (Fig. 4a), similar to trends of 
precipitation and temperature. The global distribution of canopy 
height suggests that cyclone landfall frequency may limit the growth 
of mangrove forests (Fig. 4a). Cyclone disturbance has been shown 
to be important at more regional scales31. However, the impact may 
be confounded by other environmental factors (Fig. 4b). Our results 
indicate that coastline-specific trends in maximum canopy height 
reflect the important role of precipitation (Fig. 4b) in controlling 
mangrove structure and distribution, as shown recently by Osland 
and colleagues32. For example, the trends reflect similar differ-
ences between the east and west coasts of the Americas and Africa. 
While large-scale SSS appears to align with mangrove canopy height  
(Fig. 4b), the explanatory role of this factor remains unclear as it 
varies strongly over short distances in estuarine environments, and 
is regulated by precipitation, evapotranspiration, riverine input and 
ocean circulation33. We did not find a significant relationship of 
canopy height variability with local tidal range (see Methods and 
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Supplementary Fig. 2). A multivariate regression analysis shows 
that annual precipitation, mean temperature and tropical cyclone 
landfall frequency explain 74% of latitudinal trends in maximum 
mangrove canopy height (see Methods and Supplementary Table 7).

The spatial variability in canopy height also reflects the role of 
local-scale geophysical factors driving environmental gradients 
within distinct ecogeomorphic settings (for example, nutrient 
availability and soil pore water salinity)20,34. For instance, where 
we located the tallest mangrove canopy height in the upper Gabon 
estuary (Africa, Fig. 3), we also detected low stature mangrove wet-
lands near the mouth of the same estuary (see also ref. 35). The rela-
tive influence of regional and local factors within a given latitude 
hosting a diversity of ecogeomorphic settings17 determines not only 
the species-specific mangrove spatial distribution in a given coastal 
region, but also the spatial distribution of above- and belowground 
biomass allocation patterns, regardless of latitude36. However, quan-
tifying the relative contributions of these factors to the global vari-
ability observed in our canopy height map is beyond the scope of 
this study, particularly because they currently cannot be resolved by 
remote sensing measurements. Instead, our maps can help define 
research agendas and field campaigns to quantify the relative contri-
bution of local drivers such as hydroperiod, a critical factor control-
ling nutrient availability and soil salinity in mangrove wetlands24.

Global trends of mangrove biomass and carbon stocks
Much attention is directed at mangrove forests because of their sig-
nificant allocation of carbon belowground2,3,36–39. However, carbon 
sequestration rates are estimated by using wood production and 

litterfall rates, which are positively correlated with tree height and 
AGB9,18. We developed and validated regional and global AGB mod-
els (Supplementary Table 8) from 331 field plots distributed across 
three continents (Fig. 1), spanning 51° in latitude and 168° in longi-
tude (see Methods).

Our maps indicate that mangroves can store substantial aboveg-
round carbon stocks (maximum AGB of 910.5 ±  84.2 Mg ha−1,  
Table 1a), and show considerable spatial variability. Similar to 
canopy height, the global distribution of AGB maxima in man-
grove forests follows a Gaussian latitudinal trend with a peak near 
0.47° S (Supplementary Fig. 3). The top five countries in terms of 
total AGB are (Table 1b): Indonesia (574.3 Tg, 2.7 Mha), Papua New 
Guinea (114.0 Tg, 0.5 Mha), Australia (112.8 Tg, 0.9 Mha), Brazil 
(97.8 Tg, 1.1 Mha) and Malaysia (95.6 Tg, 0.6 Mha). These countries 
are characterized by vast expanses of mangrove forests and a high 
proportion of tall stands. The top ten list (Table 1b) differs from 
previously reported rankings that include Indonesia and Papua  
New Guinea, but not Bangladesh, Myanmar, Venezuela and 
Cameroon16. Furthermore, our field data set underscores major 
regional differences in allometric relationships between canopy 
height and AGB (Supplementary Fig. 4 and Supplementary Table 8).  
For example, our allometric model for East African coastal regions 
derived from in situ data shows that, for the same forest canopy 
height, AGB in East Africa is significantly higher than in the 
Americas. This difference in values highlights the relative impor-
tance of tree density40 when calculating AGB in sites within the 
same latitude, and the need to develop regional allometry covering 
a wide range of environmental settings.

Table 1 | Distribution of mangrove canopy height and total aGB

(a) Ten countries with the tallest maximum mangrove canopy height

Country Max  
height (m)

Mean  
height (m)

Max aGB  
(Mg ha−1)

Mean aGB  
(Mg ha−1)

Total  
aGB (Mg)

Total  
carbon (Mg)

Mangrove  
area (ha)

1 Gabon 62.8 23.5 910.5 244.0 33,578,276 61,504,323 137,597

2 Equatorial Guinea 57.7 21.6 800.0 208.6 2,630,892 5,337,399 12,613

3 Colombia 54.3 24.0 413.3 129.5 26,648,548 75,973,344 205,179

4 Venezuela 52.6 30.7 392.8 184.0 45,505,364 100,551,457 247,252

5 Panama 50.9 27.7 372.6 155.6 23,676,218 58,979,743 152,189

6 French Guyana 49.2 23.2 352.9 129.2 10,290,431 29,453,310 79,640

7 Cameroon 47.5 22.6 594.5 208.7 41,603,704 84,360,030 199,303

8 Angola 45.8 16.6 562.3 139.7 3,738,534 10,090,736 26,779

9 Costa Rica 45.8 23.4 314.7 116.4 4,512,007 13,998,836 38,752

10 Papua New Guinea 45.8 27.7 432.5 242.4 113,948,576 209,577,515 469,983

(b) The largest total aGB pools

Country Max  
height (m)

Mean  
height (m)

Max aGB  
(Mg ha−1)

Mean aGB  
(Mg ha−1)

Total  
aGB (Mg)

Total  
carbon (Mg)

Percent of global  
aGB (%)

1 Indonesia 44.1 24.3 409.5 215.3 574,318,208 1,140,797,712 32.7

2 Papua New Guinea 45.8 27.7 432.5 242.4 113,948,576 209,577,515 6.5

3 Australia 25.5 11.9 212.6 119.4 112,797,816 342,085,251 6.4

4 Brazil 40.7 19.9 260.5 92.5 97,833,808 363,245,344 5.6

5 Malaysia 33.9 19.9 290.6 172.9 95,561,040 220,641,786 5.4

6 Bangladesh 25.5 15.4 421.2 171.7 73,916,552 171,532,878 4.2

7 Nigeria 33.9 13.4 355.3 96.5 66,791,716 240,715,439 3.8

8 Myanmar 30.5 13.7 257.3 130.7 61,974,552 175,266,415 3.5

9 Venezuela 52.6 30.7 392.8 184.0 45,505,364 100,551,457 2.6

10 Cameroon 47.5 22.6 594.5 208.7 41,603,704 84,360,030 2.4

Total top 10 aGB 1,284,251,336 3,048,773,825 73.2
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When adding our global aboveground carbon stock value to 
recently published values for average organic soil carbon stock 
(283 MgC ha−1; ref. 41) and root biomass (from allometric mod-
els, see ref. 42), we obtain a total global carbon stock estimate of 
5.03 Pg, of which nearly a quarter (22.7%) is stored in Indonesia 
(see Supplementary Tables 2–6 for the per country and per conti-
nent overview). Our estimate is in line with recently published total 
carbon stock estimates (Supplementary Table 9), in part due to the 
significant contribution of belowground carbon to the total global 
carbon estimate.

While our estimates of total global AGB (1.75 Pg) and mean 
AGB density (129.1 ±  87.2 Mg ha−1) are significantly lower than 
previously reported by Hutchison and colleagues16 (2.83 Pg and 
184.8 Mg ha−1, respectively), our total is close to the mean (1.88 Tg) 
of a range of published values (Supplementary Table 9). The dif-
ference in estimates is primarily due to methodological approaches 
such as the use of different mangrove extent maps. Additionally, a 
few previous AGB estimates, such as the one of Hutchison and col-
leagues16, represent the potential AGB obtained by modelling bio-
mass based on latitude43,44 and bioclimatic variables16. In contrast, 
our estimate is based on direct measurements of canopy height from 
spaceborne radar and lidar instruments, coupled with extensive in 
situ forest structure and composition measurements. As such, the 
differences between our estimates and those reported in previ-
ous studies reflect local-scale variability within mangrove forests 
and areas where mangroves are stressed or impacted by environ-
mental and geophysical factors, and anthropogenic activity. For 
example, the differences in mean AGB between studies (shown as 
‘satellite-based’ from this study versus ‘environmental model’ from 
ref. 16) in West Africa are as follows: Benin (10.0 Mg ha−1 versus 
160.6 Mg ha−1), Ghana (59.8 Mg ha−1 versus 166.9 Mg ha−1), Nigeria 
(96.5 Mg ha−1 versus 195.1 Mg ha−1), Sierra Leone (74.7 Mg ha−1 
versus 180.2 Mg ha−1) and The Gambia (42.0 Mg ha−1 versus 
144.9 Mg ha−1), suggesting that model-based estimates may have 
overestimated AGB by 100 Mg ha−1 or more. Mangrove wetlands 
in these regions are heavily impacted by anthropogenic pressures 
such as wood harvesting, bio-fuel plantations, development projects 

and industrial pollution45, and may explain discrepancies. Industrial 
pollution, for example, is a common cause of mangrove degrada-
tion in the Niger Delta region (Nigeria)46. Similarly, our total carbon 
estimate for Indonesia (1,141 TgC) is less than half of that reported 
by Murdiyarso and colleagues7 (3,140 TgC). This discrepancy is due 
to differences in the soil depth (1 m in this study; 2–3 m in ref. 7) that 
is being considered for estimating the soil carbon component and 
our use of a smaller total mangrove area (2.7 Mha versus 4.2 Mha). 
These findings also suggest that regions with deep carbon-rich soils 
can potentially yield higher values than those reported in this study. 
While we report on the top 1 m of soil as a first-order conservative 
estimate, we foresee the continued development of more spatially 
explicit maps of soil carbon in blue carbon ecosystems36,37,47 that can 
be coupled with our AGB and carbon data sets.

Baseline for monitoring regional and global carbon trends
In this study we have shown that mangroves can store substantial 
aboveground carbon stocks and that continental to global patterns 
of mangrove canopy height and AGB follow precipitation, tempera-
ture and cyclone landfall frequency trends. Moreover, our spatially 
explicit maps indicate that local-scale geophysical and environmental 
conditions also regulate forest structure, and therefore carbon stocks 
and sequestration rates. Our mangrove canopy height map revealed 
a vast range of canopy heights, including maximum realized values 
(> 62 m) that surpass maximum heights of other forest types world-
wide27, and the discovery of the tallest stands of mangrove forests in 
the world, on the Atlantic coast of equatorial Africa and the Pacific 
coast of South America. Our AGB map can serve as a baseline input 
for estimating the contribution of mangroves to carbon sequestra-
tion by wetlands in general and the potential contribution of CO2 
emissions resulting from mangrove degradation and loss15,39,43.

online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41561-018-0279-1.
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Methods
Mangrove canopy height estimation with SRTM and ICESat/GLAS. The global 
maps of canopy height were generated using SRTM DEM data48 collected in 
February 2000 and lidar heights from the ICESat/GLAS Spaceborne Lidar 
mission following a methodology that was successfully implemented on regional 
scales in Florida, Colombia and across Africa, with root-mean-square error 
(r.m.s.e.) values of 3 m or lower across the 1–30 m mean height range23,49–51. The 
SRTM DEM values report elevations located at the InSAR scattering phase height 
centre, which corresponds to a height located between the ground elevation and 
the top of the canopy23,49,52 in vegetated areas. This is due to radar microwaves 
penetrating and interacting within the forest canopy, rather than with the top of 
the canopy or ground alone. To identify mangrove areas and mask non-mangrove 
regions in the SRTM elevation data set, we used the global mangrove extent map 
from ref. 26. We only included areas with SRTM elevation values ranging from 0 to 
55 m above mean sea level to remove some areas falsely identified as mangroves 
in the ref. 26 map. This threshold value preserves the tallest mangrove forest 
stands (Fig. 3). This map was preferred over the more recent map developed 
by Hamilton and Casey12 as it is coincidental with the SRTM data set (that is, 
they are both from 2000) and, so far, it is the only one that specifically maps 
mangroves from Landsat data, as opposed to using global canopy cover from the 
Global Forest Change product53.

GLAS lidar altimetry data were collected globally from 2003 to 2009, 
providing the only global lidar canopy and height measurement, with sparse 
samples distributed across the globe. We used GLAS data to remove the elevation 
bias introduced by the limited penetration of the SRTM C-band microwave 
signal within the forest canopy, which allows for spatially comprehensive and 
accurate mapping of canopy height51. The GLAS lidar-derived maximum canopy 
height is defined as the height of the lidar pulse containing all its energy between 
the ground and the top of the tallest tree (referred to as the relative height of 
the 100th percentile, RH100). We found a total of 57,369 lidar waveforms in 
mangrove areas using the entire GLAS archive spanning 2003–2009, filtering 
out the low-quality measurements27 and intersecting the GLAS estimates of 
maximum canopy height with the SRTM mangrove extent subset. Supplementary 
Fig. 5 presents a scatterplot of RH100 and SRTM elevation in mangrove areas. 
We applied regression model (1) relating GLAS RH100 to SRTM elevation 
measurements (Supplementary Fig. 5) to obtain a global map of maximum 
canopy height:

= . × HSRTMH 1 697 (1)max SRTM

where HSRTM represents the original SRTM DEM, and SRTMHmax is the new 
maximum canopy height data set. Regions with an SRTM elevation of 0 m but 
mapped as mangroves in the ref. 26 map were assigned a default value of 0.5 m 
(based on field observations) as these are most probably scrub or low-density 
mangrove forests that could not be detected by SRTM. We computed the mean and 
maximum SRTMHmax values for each country, as shown in Supplementary Tables 
2–6. In total, we report all of the results obtained for 117 countries and territories. 
We defined the maximum SRTMHmax as the 95th percentile value in each country 
to minimize the impact of canopy height error reported from a potentially small 
number of misclassified pixels. For countries with the tallest forests (> 40 m), we 
identified the exact location of these forest stands to visually ascertain that each 
region included more than one pixel representing tall mangroves, and especially to 
avoid confusing the maximum SRTMHmax with local topographic features included 
within the mangrove mask26. In countries and territories with small mangrove areas 
close to steep topography, higher topographic areas inland from mangrove fringe 
were often falsely classified as mangroves. In these cases, mostly occurring over 
islands such as Japan, Palau, Samoa, the Solomon Islands and Fiji, the use of the 
95th percentile to determine SRTMHmax did not suffice to remove outliers, and we 
therefore do not report their maximum SRTMHmax value (Supplementary Tables 
2–6). Finally, the SRTM estimates of Hmax (that is, SRTMHmax) were validated with 
in situ measurements of Hmax with an R2 of 0.73 and an r.m.s.e. of 6.31 m globally 
(Supplementary Fig. 1b). In February of 2016, in situ measurements of Hmax were 
collected in Pongara National Park (Fig. 3) to confirm the validity of the tallest 
canopy height values in Gabon. Here, the heights of five of the tallest observed trees 
were measured using a laser rangefinder, confirming the location of the areas with 
the tallest mangrove canopy in the world (with all five trees measuring between 
62 m and 65 m; Fig. 3).

In addition to Hmax, we also generated a map of Hba, the basal area weighted 
height, which was used as input for the AGB map. We chose Hba because it has 
a lower r.m.s.e. for the height estimate (Supplementary Fig. 1) and there were 
more field data available for biomass model generation (we did not have Hmax 
values for the Bangladesh data). The smaller r.m.s.e. is also expected as Hba, 
like biomass, is a function of basal area. We calculated SRTMHba by relating 
field values of Hba (described in the section below) to SRTM DEM elevations 
(Supplementary Fig. 1):

= . × HSRTMH 1 0754 (2)ba SRTM

where HSRTM represents the original SRTM DEM and SRTMHba the new basal area 
weighted canopy height data set.

Height uncertainty. The combination of multiple data sets and the global 
approach of our study inevitably introduces some degree of uncertainty into our 
results. In the case of mangrove height, the SRTMHba data had an r.m.s.e. of 3.6 m 
when compared to in situ Hba measurements (shown in Supplementary Fig. 1).  
This means that in any particular pixel, if our SRTMHba map indicates a 4 m 
mangrove forest, the in situ Hba is likely to be between 0.4 m and 7.6 m. However, 
the SRTMHmax uncertainty is larger, as indicated by the regression with GLAS 
RH100 (r.m.s.e. of 5.7 m) (Supplementary Fig. 5) and in situ Hmax (r.m.s.e. of 
6.31 m). Nonetheless, both height estimates are more accurate than the elevation 
errors reported for the global SRTM DEM54 as we are only studying relative 
height in flat coastal areas where the impacts of topography on the DEM error are 
reduced. While our estimated height uncertainty is significant at the 30 m pixel 
scale, it is random, and therefore our global data products allow for the analysis of 
canopy structure trends at regional and continental scales.

The regression residuals between the SRTM height estimates, the GLAS 
RH100 or field results originate from several sources of uncertainty, discrepancies 
in the spatial scale, and the timing of measurements. There are inherent system 
errors associated with the GLAS and SRTM sensors, field measurement errors, 
geo-location errors and discrepancies in spatial resolution51 between the 30 m 
SRTM pixel, the 70 m GLAS footprint and the various plot sizes used in this study. 
Additionally, these measurements were acquired over different periods (February 
2000 for SRTM; 2003–2009 for GLAS; 2004–2016 for field measurements) and  
are therefore impacted by natural changes in the canopy structure over time.  
A detailed analysis of differences in canopy height obtained from SRTM, lidar  
and field measurements52 showed that SRTM height is sufficiently constant over 
time to measure canopy height in established mangrove forests.

In situ forest height and biomass estimation. Our selected field sites (331 plots  
in total) included a wide variety of forest structure and mangrove ecotypes  
(for example, scrub, fringe, riverine and basin) with measured in situ tree heights 
ranging from 1 to 65 m (Supplementary Table 1). The mangrove field sites were 
distributed along a latitudinal range from 26º S (Maputo Reserve, Mozambique)  
to 25º N (Everglades, USA), encompassing the equatorial region (for example, 
Chocó, Colombia). Field data were used to estimate forest structure attributes  
(that is, Hba, Hmax and AGB). Most of the data were collected in field plots 
throughout the Americas and Africa, using fixed or variable plot sizes49 
(Supplementary Fig. 4 and Supplementary Table 1). Within variable plots, trees 
were selected using a fixed-angle gauge. For each selected tree, we identified the 
species and measured the diameter at breast height (DBH) and height using a laser 
rangefinder or clinometer. Tree density (that is, the no. of stems) was estimated for 
each plot and expressed per unit area (in ha). Generally, the plot size depended on 
the largest tree size at each forest site. For instance, in Chocó (Colombia), where 
trees were very tall and tree density was low, we used a 25 m fixed-radius plot, 
while on Inhaca Island (Mozambique), where trees were small and tree density  
was high, plots had a 7.5 m radius. In the Zambezi River Delta (Mozambique),  
40 plots of 0.52 ha were sampled with subplots55,56 each with a radius between 3 m 
and 5 m. On Inhaca Island (Mozambique), we sampled 51 plots with a radius of 
7.5 m (0.0176 ha)50. For all sites, we computed field basal area weighted height Hba as

π
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∑ ×
∑
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r H

r
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( )
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i i
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where Hi and ri are the height and radius (that is, DBH/2) of tree i, respectively, in 
metres. Hba accounts for tree size, which means larger trees have a stronger impact 
on the forest height estimate. Hmax was defined as the height of the tallest tree 
within a plot. In situ data were collected within the 15-year period after the SRTM 
data were obtained.

Global trends in mangrove structure. To test whether spatial trends in mangrove 
canopy structure are associated with temperature, precipitation and tidal range, we 
used the WorldClim57 model, and tidal outputs from the ocean model developed by 
Wang and colleagues58. The analysis of canopy height trends with these climate and 
environmental variables (WorldClim annual mean temperature, mean temperature 
of warmest quarter, standard deviation of monthly mean temperature, mean of 
coldest quarter, annual precipitation and SSS) was performed by intersecting 
a circle with a radius of 10 km centred on the coastline with mangroves every 
half degree in latitude and intersecting the coastline at least 20 km apart in the 
longitudinal direction. Cyclone frequency and distribution from 1842 to 2016 
were calculated from the NOAA International Best Track Archive for Climate 
Stewardship (IBTrACS version 3 release 9). In this data set the tropical cyclone 
occurrences are shown as points along their path. To generate a histogram of 
cyclone frequency and distribution, we computed the percentage of these points 
overlapping with mangrove areas, adding a buffer zone of 1.5° to the mangrove 
location. The buffer zone was added to include all tropical cyclones potentially 
influencing mangrove growth. Previous studies show that precipitation and 
temperature are climatic variables that regulate mangrove ecosystem structure  
(for example, height and biomass) and function (that is, productivity)17,18. Tidal 
range was computed as the minimum and maximum sea surface height considering 
annual variations of four semidiurnal constituents and four diurnal constituents. 
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The mean SSS as a function of latitude for each continental region (Fig. 4b) was 
generated using 44 monthly mean maps (from 2011 and 2015) from version 4 of 
the Aquarius CAP Level 3 product59. The sampled environmental variables were 
averaged per 1° of latitude, ranging from 34° S to 30° N. The occurrence of cyclones 
was counted per 1° interval. A multivariate regression analysis demonstrated the 
significant relationships between some environmental variables and mangrove 
structure (that is, maximum height) (Supplementary Table 7). Initially, all 
aforementioned variables were included in the analysis with insignificant (that 
is, P >  0.05) and highly correlated variables (for example, minimum temperature 
and mean temperature) gradually eliminated. Only temperature, precipitation and 
cyclone landfall frequency remained, explaining 74% of observed global trends 
in mangrove maximum canopy height (Supplementary Table 7). Further analysis 
also showed that precipitation alone explained 57% of global canopy height trends 
while temperature alone explained 53%. Together, precipitation and temperature 
explained 71% of global canopy height trends. The multivariate regression and 
variance inflation factor calculation were performed using the python statsmodels 
module60. All of the remote sensing data processing and analysis were carried out 
using the Python scripting language, Quantum Geographical Information System 
(QGIS)61, the Geospatial Abstraction Library (GDAL), the Remote Sensing and 
GIS python library (RSGISLib)62 and GNU Parallel63.

Global mangrove biomass allometry development. We used the in situ field 
data sets to derive stand-level allometry between AGB, basal area weighted height 
Hba and maximum canopy height Hmax. AGB was estimated for each individual 
tree tagged inside the plot, using regional or site-specific allometric equations as 
described by previous studies23,40,50,64. We used the generalized pantropical tree 
allometric model65 with species-specific wood density from the global wood 
density database66 to calculate the above- and belowground (root) biomass of 
individual trees (Supplementary Table 1). The sum of individual trees within the 
plot was then computed and normalized, using plot sizes, to represent total forest 
stand AGB density in Mg ha–1. We then generated regional and global models 
between plot-level canopy height and plot-level AGB density, where height and 
AGB relationships were fitted to the regression model:

= ×a HAGB (4)x
b

where Hx can represent either Hba or Hmax. The allometric parameters a and b are 
fitted. The global model was generated using all of the plot data (n =  331) and Hba 
of the field data, while the regional models were generated for the Americas (using 
data from Colombia, USA, Venezuela, Brazil, Costa Rica, Ecuador, Mexico, n =  81), 
East Africa (using data from Mozambique, n =  101) and South Asia (using data 
from Bangladesh, n =  149).

The analysis of the field data and the allometric regression models between 
field height and AGB confirmed that while canopy height alone explains most 
of the variability in AGB, adding stem density or basal area to the model, as 
in the case of Hba, and developing region-specific regressions, improved the 
relationship (Supplementary Fig. 4). In addition, Hba is computed from multiple 
tree measurements, which reduces systematic and random height measurement 
error at the stand level, as opposed to Hmax, which is reported from a single tree 
measurement. Supplementary Fig. 4 shows the relationship of AGB with Hba on a 
global scale as well as region-specific scales.

Three region-specific allometric models were derived from field data for East 
Africa, the Americas and Middle East Asia. For Southeast Asia and Australia, a 
published allometric model was used64. Finally, for West Africa, we applied the 
global allometric equation, as no field data were available to generate a regional 
allometry. The regional biomass allometric models developed in this study have 
r.m.s.e. values ranging from 54.3 Mg ha–1 to 103.4 Mg ha–1. All models generated for 
this study are shown in Supplementary Fig. 4, and all models used in the study can 
be found in Supplementary Table 8.

Large-scale AGB estimation with SRTM. The global mangrove forest AGB map 
was generated by linking the field-measured biomass–height allometry (described 
above) with SRTM estimates of Hba (that is, SRTMHba). This procedure implies a 
two-step process where SRTM is converted to SRTMHba and then to AGB using 
appropriate field-derived Hba to AGB allometry (Supplementary Table 8). This 
approach is meant to facilitate potential updates by the user community as more 
regional height-to-biomass models are developed. Supplementary Fig. 1a shows the 
relationship between SRTM elevation and field-measured canopy height data,  
used to convert SRTM elevation to SRTMHba. Using this method, the predicted  
AGB was estimated with an accuracy of 84.2 Mg ha–1 at the plot level 
(Supplementary Fig. 6).

Finally, total (above- and belowground) biomass and carbon stock estimates 
by country were generated by summing all corresponding pixels, while accounting 
for belowground biomass and soil carbon. We computed the total aboveground 
carbon stocks per country, assuming a stoichiometric factor of 0.451 as the 
AGB conversion factor, following the IPCC guidelines67. We also accounted for 
belowground carbon and root biomass using published allometric models42,68. It is 
important to note that all allometric equations are site-specific and extrapolation 
may result in a bias. For instance, in the Florida Everglades, root biomass in scrub 

forests can be three to four times higher compared to AGB69. Furthermore, most 
allometric models do not account for scrub forests, thereby adding uncertainty 
to the AGB and total carbon estimates. Nevertheless, we believe we have used the 
most complete data sets and the most accurate values currently available, which 
can be updated as new global belowground data and new allometry become 
available. Country-wide belowground carbon stocks were estimated with a mean of 
283 MgC ha–1 within the top 1 m of soils41. Total root biomass was estimated as 49% 
of the AGB following the IPCC guidelines67. These generic values, uncertainties in 
the allometric models, as well as the uncertainty of 12%26 in the mangrove extent 
map, will propagate as a bias in country-wide totals.

Data availability
The data that support the findings of this study are available from the Oak Ridge 
National Data Archive (ORNL DAAC; https://doi.org/10.3334/ORNLDAAC/1665) 
as GEOTIFF files and as an online webmapping tool (https://mangrovescience.
earthengine.app/view/mangroveheightandbiomass). The in situ field data that 
have not been published previously are also available through the ORNL DAAC 
as .csv files listing individual tree measurements (https://doi.org/10.3334/
ORNLDAAC/1665). The SRTM and ICESat/GLAS data sets used as input to 
generate the maps can be downloaded from https://lta.cr.usgs.gov/SRTM and 
https://nsidc.org/data/icesat/data.html, respectively. The global mangrove map26 is 
freely available at http://data.unep-wcmc.org/datasets/4. The tropical cyclone and 
SSS data are available from NOAA archives https://data.nodc.noaa.gov/cgi-bin/
iso?id= gov.noaa.ncdc:C00834 (https://doi.org/10.7289/V5NK3BZP) and https://
podaac.jpl.nasa.gov/dataset/AQUARIUS_L3_SSS_CAP_MONTHLY_V4?ids= 
Platform&values= AQUARIUS_SAC-D (https://doi.org/10.5067/AQR40-3TMCS). 
The WorldClim data are available at http://worldclim.org/version2.
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